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Abstract
We apply a density functional approach for arbitrary branched liquid-crystalline
(LC) heteropolymers consisting of elongated rigid rods coupled through
elastic joints developed in a companion paper (Wessels and Mulder 2006
J. Phys. Condens. Matter. 18 9335) to a model for side-chain liquid-crystalline
polymers. In this model mesogenic units are coupled through finite-length
spacers to a linear backbone polymer. The stereochemical constraints imposed
at the connection between spacer and backbone are explicitly modelled. Using
a bifurcation analysis, analytical results are obtained for the spinodal density of
the I–N transition and the variation of the degree of ordering over the various
molecular parts at the instability as a function of the model parameters. We also
determine the location of the crossover between oblate and prolate backbone
conformations in the nematic phase.

1. Introduction

Liquid-crystalline (LC) polymers combine the the optical properties of liquid crystals with
the mechanical and processing characteristics of polymers. To create such LC polymers
low-molecular-weight liquid-crystal forming moieties, called mesogens, are either directly
incorporated into a linear polymer backbone (main-chain LC polymers) or laterally attached
to them (side-chain LC polymers). To achieve an optimal balance of properties, it is essential
that, on the one hand, the mesogens can freely interact to drive orientational ordering, while
on the other hand the polymer backbone retains a sufficient amount of conformational entropy.
Apart from the technological interest in the combination of properties mentioned above, these
conflicting tendencies give rise to a rich phase behaviour and these systems are therefore
also interesting from a fundamental perspective [1–6]. The practical solution for achieving
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the necessary balance of tendencies has turned out to be the insertion of more flexible
moieties within the polymers in the form of aliphatic spacer chains [7–9]. These spacers
effectively spatially decouple the mesogens, minimizing any stereo-chemical frustration to the
LC ordering process, while the polymer chain as a whole can still have an approximately coil-
like conformation.

In the companion paper [10], hereafter referred to as I, we have set up a general formalism
for describing the phase behaviour of arbitrary branched liquid-crystalline (LC) heteropolymers
consisting of elongated rigid rods coupled through elastic joints. Here we will apply this
formalism to model side-chain polymers.

The history of understanding of the molecular origin of LC order has a few definite
milestones. The seminal paper of Onsager on the explanation of nematic LC order in
colloidal suspensions of rigid hard rodlike particles [11], which introduced the concept of
excluded volume, focused on entropic effects. The mean field theory of Maier and Saupe [12]
successfully made contact with the large number of data on thermotropic liquid crystals. The
role of molecular flexibility was first discussed by Khokhlov and Semenov (KS) [13, 14] by
extending Onsager’s theory to hard wormlike chains, and later by Warner and co-workers [15],
who similarly extended the Maier–Saupe theory. We refer the reader to I for a review of how
these elements can be combined to make models of main-chain LC polymers.

Given the additional complexity, due to their heterogeneous composition and branched
geometry, it is not surprising that much less work has been done on LC ordering in side-chain
LC polymers. Khokhlov and co-workers first used a Flory type lattice approach [16, 17]. Later
on a more realistic off-lattice model for side-chain LC polymers was considered by Warner et al
(WWR) [18, 19]. In their model rigid mesogenic side-groups are directly laterally connected
to a semi-flexible backbone. Except for the bending interactions of the wormlike backbone,
all interactions between the various molecular components are treated in a Maier–Saupe type
mean-field manner. They have explored the full (nematic) phase diagram, finding three nematic
phases, first-order phase transition between them and a critical point. Later on, they included
biaxial phases as well [20]. However, their model does not take into account that in reality
additional spacers are used as lateral connectors between the mesogens and the backbone.
Moreover, the stereo-chemical constraints on the relative orientation of the side-groups with
respect to the backbone are also treated as a mean-field cross-interaction, and therefore not on
the same footing as the bending interactions of the backbone, this in spite of the fact that all
these interactions, which are related to the way the various molecular components are linked
together to form the whole polymer, are similar in origin and as short-range intra-molecular
interactions distinct from the inter-molecular orientational interactions. One aim of the present
work is to specifically address these two shortcomings.

The generic model for side-chain LC polymers we consider in this paper consist of three
different components: a polymer backbone, mesogens and spacer chains, that laterally connect
these mesogens to the backbone. All these components are modelled as consisting of hard,
slender, cylindrically symmetric rods connected through appropriate bending potentials. The
formalism we have developed in I allows us to deal with the intra-molecular interactions of
such a branched, but simply connected, molecule exactly. The inter-molecular interactions
are treated within the Onsager approximation. Both for the backbone polymer and the lateral
spacer chains we take the wormlike chain limit. Moreover, we let the number of polymer repeat
units go to infinity, disregarding any end effects. The remaining theory is fully described by six
parameters: the length, the persistence length and the diameters of both the backbone, within a
single repeat unit, and the lateral spacers, all measured in units relative to the mesogen length
and diameter respectively. A brief report, containing a number of numerical results on this
model, has been presented elsewhere [21].
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Figure 1. The model of a side-chain LC polymer we employ, with the inset showing the labelling
of the segments in the different components.

The outline of the paper is as follows. In section 2.1 we briefly recall the formalism
presented in more detail in I, setting up the free-energy functional, discussing the appropriate
stationarity equations, discussing the isotropic–nematic phase equilibrium and formulating the
wormlike-chain limit, which is applied to both the backbone and the spacer chains. In section 3
we turn to the results, first performing a bifurcation analysis of the isotropic phase. This yields
an analytical determination of the isotropic–nematic spinodal. We explicitly determine the
values of the model parameters for which the backbone conformation crosses over from prolate
to oblate with respect to the preferred orientation of the mesogens. Finally, we present the
relative degree of order along a polymer repeat unit and compare with some numerical results
presented earlier for the same model [21].

2. Formalism

2.1. Model

We consider a fluid N LC polymers in a volume V , where we denote the polymer
number density as ρ = N/V . The polymers consist of a backbone (denoted by B)
with side-chains attached laterally at regular distances. Each side-chain consists of a rigid
mesogen (M) connected to the backbone via a flexible spacer (S). A repeating section of
the backbone with a single side-chain attached we refer to as a unit, and there are N
of these units in the polymer (see figure 1). The polymer is modelled as a segmented
chain, with the segments being slender cylindrical rods. Within a unit, each of the three
different components τ , where τ ∈ {B, S, M}, consists of Mτ segments characterized
by a length lτ and a width dτ with lτ � dτ . Consequently, there are NMτ segments
of each component in the whole chain and by definition there is only one mesogen per
unit, hence MM = 1. Every segment has a label m which specifies its location in the
chain but is also assumed to (implicitly) contain its type-specification, i.e. by the notation
m ∈ τ we mean that segment m is a type-τ segment. Additionally, each segment has an
orientation ω̂m , which is a unit vector pointing along the long axis of the segment. The
conformation of the whole polymer is then given by the orientations of all segments Ω =
{ω̂1, ω̂2, . . . , ω̂N (MB+MS+1)}.

We assume a bending potential um,m′ = uτ,τ ′ between any two segments m ∈ τ and
m ′ ∈ τ ′ which are nearest neighbours in the polymer,
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uB,B(ω̂m, ω̂′
m′ ) = −JBω̂m · ω̂′

m′

uB,S(ω̂m, ω̂′
m′) =

{
0 if ω̂m · ω̂′

m′ = 0

∞ if ω̂m · ω̂′
m′ �= 0

uS,S(ω̂m, ω̂′
m′ ) = −JSω̂ · ω̂′

m′

uS,M(ω̂m, ω̂′
m′ ) = −JSω̂ · ω̂′

m′

(1)

which is obviously symmetric, uτ,τ ′ = uτ ′,τ . The BB, SS and SM potentials favour mutual
alignment and oppose bending in a generic fashion via the orientational coupling constants
JB and JS for the backbone and the spacer respectively. The BS potential uniquely selects a
perpendicular arrangement, in order to force (at least locally) the spacers to be at right angles
with the backbone, which mimics the stereo-chemical constraints inherent in this attachment.
Concerning the interaction between different polymers, we assume only hard-body repulsion
between the segments, meaning that the potential is infinity when two segments overlap and
zero when they do not [11].

2.2. Stationarity equations

Within density functional theory the free energy is a functional of the single-molecule
configuration distribution function [22]. In the present case, we only consider homogeneous
fluid phases, so this function has no spatial dependence and it reduces to ρ f (Ω). We call the
function f (Ω) the conformational distribution function (CDF), which is normalized as follows∫

dΩ f (Ω) = 1 where
∫

dΩ = ∫ ∏
k dω̂k . The density functional (in terms of f (Ω)) for our

system in the second virial (or Onsager) approximation is given by

βF[ f ]
N

= log (ρVT) +
∫

dΩ f (Ω)
[
log f (Ω) − 1

]
+ β

∫
dΩ f (Ω)U(Ω) + 1

2ρ

∫
dΩ dΩ′ f (Ω) f (Ω′)E(Ω,Ω′). (2)

Here, β = 1/kBT , kB the Boltzmann constant, T the temperature and VT is a product of the
relevant de Broglie thermal wavelengths. The quantity U(Ω) is the total internal energy of the
polymer and is given by

U(Ω) =
(m,m′)∑
m,m′

um,m′(ω̂m, ω̂m′ ), (3)

where the sum runs over all m and m ′ which are nearest neighbours in the chain (notation:
(m, m ′), note that m and m ′ do not need to be of the same type). In fluid phases of hard-body
molecules a central role is played by the so-called excluded volume E(Ω,Ω′) between two
molecules. It is approximated as the sum over all segment–segment excluded volumes,

E(Ω,Ω′) =
∑
m,m′

em,m′ (ω̂m, ω̂′
m′ ). (4)

which are em,m′ = eτ,τ ′ for m ∈ τ and m ′ ∈ τ ′. For very slender rods (lτ � dτ ) these are given
by

eτ,τ ′(ω̂m, ω̂′
m′ ) = lτ lτ ′(dτ + dτ ′)| sin γ (ω̂m, ω̂′

m′)|, (5)

where γ (ω̂, ω̂′) is the planar angle between ω̂ and ω̂′.
At this point, we note that three approximations have been made; we neglect

(i) interactions between three or more chains simultaneously (Onsager approximation),
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(ii) simultaneous interactions between two chains involving more than one pair of segments
(equation (4)) and

(iii) overlaps of segments on the same chain (equation (3)).

For homogeneous bulk phases these approximations are commonly assumed to be reasonable
and to retain the essential physics [23, 24]. Furthermore, we stress that for sufficiently slender
segments (lτ � dτ ) the Onsager description becomes exact [11, 25].

In equilibrium, the free energy reaches a minimum and the functional is stationary,
i.e. δF/δ f (Ω) = Nμ, where μ is the chemical potential acting as a Lagrange multiplier
enforcing the normalization of f (Ω). This yields the following Euler–Lagrange equation:

log f (Ω) + βU(Ω) + ρ

∫
dΩ′ f (Ω′)E(Ω,Ω′) = βμ, (6)

where μ can be eliminated using
∫

dΩ f (Ω) = 1.
Via the following projection, we define the single-segment orientational distribution

function (ODF),

fm(ω̂m) =
∫ ∏

k �=m

dω̂k f (Ω), (7)

where the integration is over all ω̂k except the mth. Inserting the detailed forms
(equations (1), (3), (4) and (5)) in equation (6) and using equation (7), we obtain the following
set of coupled equations in terms of the ODFs:

fm(ω̂m) = Q−1
∫ ∏

k �=m

dω̂k

(k,k′ )∏
k,k′

wk,k′ (ω̂k, ω̂k′ )
∏

k

exp

[
−ρ

∑
k′

∫
dω̂′ek,k′ (ω̂k, ω̂

′) fk′ (ω̂′)

]
.

(8)

In order to ease notation we have introduced wk,k′ (ω̂k, ω̂k′ ) = exp[−βBuk,k′ (ω̂k, ω̂k′ )]. A more
detailed version of the derivation of equation (8) is given in [25] for linear homopolymers
and [10] for general heteropolymers.

2.3. Isotropic and nematic phases

The isotropic phase, in which fm(ω̂m) = 1/4π , is always a solution to equations (8), and at
low densities also (globally) stable. At higher densities the mesogen–mesogen interactions will
drive the system towards an orientationally ordered phase: the nematic. Here we only consider
uniaxial nematics and consequently it suffices to use the standard Maier–Saupe order parameter
as a measure of the orientational order of a segment m,

Sm = 2π

∫ π

0
dθ sin θ P2(cos θ) fm(θ), (9)

with the factor 2π in front due to the azimuthal integration (
∫

dω̂ = ∫ π

0 dθ sin θ
∫ 2π

0 dφ).
The average degree of order per component can be defined straightforwardly: Sτ =
1/Mτ

∑
m∈τ Sm . In the isotropic phase, Sτ = 0 for all three components τ ∈ {B, S, M}.

In the nematic phase, the mesogens order with respect to a certain preferred direction, given
by the director n̂, and, because of their direct connection to the mesogens, the same will
happen to the spacers, 0 < SM, SS < 1. However, the backbone experiences two mutually
opposing contributions: (i) via the spacers a tendency to orient perpendicular to the mesogens
is transferred whereas (ii) due to the external (nematic) field a parallel arrangement is favoured.
If the first effect dominates the net nematic order is negative SB < 0 and the backbone will
be in an oblate conformation, whereas if the second effect wins the backbone will have a
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positive order SB > 0 and be in prolate conformation2. If the spacers are relatively short and
therefore stiff, the result will be an ‘oblate nematic’ (ON), and if they are longer and floppier a
‘prolate nematic’ (PN) results. The excluded volume term in the free energy scales with density,
whereas intrachain bending (elastic) energy does not depend on density. Therefore, for higher
densities the system will eventually always favour a PN phase. Upon compression we thus
expect to find a phase sequence I–ON–PN or directly I–PN. In [10], we have studied numerical
solutions to equations (8) for this system, locating the I–N coexistence and computing the
dependence of the order parameters of the various components in the nematic phase. It can
be shown that the transition from ON to PN is continuous and is in fact not a thermodynamic
phase transition [21, 10]. In this paper, we restrict ourselves to the I–N transition and study
the properties of the I–N bifurcation point. Furthermore, we compare some of the bifurcation
results on the I–N transition to the numerical results of [21].

2.4. Wormlike chains and infinite backbones

Since Khokhlov and Semenov [13, 14], the wormlike chain concept is widely used to model
nematic ordering in partially flexible molecules. Wormlike chains are continuously flexible
objects characterized by a persistence length [26]. In order to reduce the number of model
parameters we transform our segmented backbone and lateral spacers in wormlike chains by
applying the so-called wormlike chain limit (WCL). Going from our system of segmented
chains to continuously flexible chains, the WCL can be formulated as [25]

lB → 0, β JB → ∞, MB → ∞
lS → 0, β JS → ∞, MS → ∞ (10)

where the following products and ratios stay finite:

PB = β JBlB M̄B = MB/β JB

PS = β JSlS M̄S = MS/β JS,
(11)

where the quantities PB and PS turn out to be the persistence lengths and M̄B and M̄S the
number of persistence lengths in one repeat unit [25]. Throughout this paper, an overbar denotes
quantities obtained after taking the WCL. By applying the WCL to the backbone and the spacers
we can drop two model parameters: lB, JB,MB → PB,M̄B and lS, JS,MS → PS,M̄S.

We can proceed simplifying the system and drop another model parameter by assuming
that the backbone is infinitely long. In this way, every unit is effectively located in the ‘middle’
of the polymer, since the influence of the free ends of the backbone is zero. We call this the
infinite backbone limit (IBL),

N → ∞ ρ → 0 with η = ρN finite, (12)

where the polymer density ρ has to go to zero in order to obtain a finite unit density η (=
mesogen density, which is driving the LC phase transitions). This limit allows us to consider
(effectively) only a single unit, as every unit in the chain is exactly the same as its neighbour,
and as a consequence there are no ‘free end effects’.

Finally, as our system is scale invariant we can use dimensionless length scales. The
mesogens are the largest segments (they are the liquid-crystal formers) and are not subject
to the WCL, and therefore we choose to measure all other lengths in units of lM and dM,
i.e. P̃τ = Pτ / lM and d̃τ = dτ /dM with τ ∈ {B, S}, with the tilde denoting dimensionless

2 Strictly speaking the connection between the positive sign of the nematic order of the backbone SB > 0 (SB < 0)

and prolate (oblate) conformations (which are determined by the radii of gyration of the backbone parallel and
perpendicular to the nematic field) is not trivial. There is, however, a rough correspondence and we will proceed
bearing this in mind.
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quantities. As a result this reduces the set of effective model parameters to six, i.e. P̃B, d̃B

and M̄B for the backbone, and P̃S, d̃S and M̄S for the spacers (the mesogens now have unit
dimensions for both the length and the width). The only thermodynamic intensive variable is
the unit density, η, which can be made dimensionless with the prefactor of the MM excluded
volume: η̃ = 2ρN l2

MdM. A special case we find instructive, and frequently use, is obtained
by setting d̃B = d̃S = 0 and P̃B = P̃S, leaving only three model parameters. In this case, the
backbone and spacers have zero thickness, and the BB, BS and SS excluded volumes are zero,
but the BM, SM and of course the MM interactions are not. In spite of the above limits and
simplifications, we believe the essential physics is still retained.

3. Bifurcation analysis

3.1. Bifurcation density

The stationarity equations can be studied by means of an I–N bifurcation analysis to locate the
density where the nematic solution branches off the isotropic. Thereto, we substitute isotropic
distributions with infinitesimal (ε) nematic perturbations, fm(ω̂m) = 1/4π + εcm P2(ω̂m · n̂)

in the stationarity equations, equations (8). Subsequent linearization with respect to ε,
performance of the integrals and averaging over all segments belonging to the same type yields
the following three-dimensional matrix eigenvalue equation:

c = − ρ

4π
W(2)E(2)c. (13)

The details of this derivation are given in I. In this equation the lowest (positive) solution for
the density ρ is identified as the ‘physical’ bifurcation density ρ∗. The corresponding solution
for the components of c represents the average relative degree of ordering of each of the types
of components at the bifurcation, cτ,∗ = 1

Mτ

∑
k∈τ ck,∗ (which we will normalize by setting

the mesogen order to one, cM,∗ = 1). The matrices W(2) and E(2) depend on molecular
parameters and correspond to intramolecular (due to flexibility) and intermolecular (due to
excluded volume) interaction contributions respectively. The definitions of W(2) and E(2), in
terms of segmented chains, are given below, after which they are evaluated in the WCL and the
IBL.

We consider first the excluded volume matrix, which is defined as [10]

E (2)
τ,τ ′ = N 2MτMτ ′e(2)

τ,τ ′ = s2N 2Mτ lτMτ ′lτ ′(dτ + dτ ′), (14)

where e(2)
τ,τ ′ and s2 = −π2/8 are the second order Legendre coefficients of eτ,τ ′(ω̂ · ω̂′)

(from equation (5)) and | sin γ (ω̂ · ω̂′)| respectively. We choose to order the types in the
sequence B, S, M. We normalize E(2) with respect to its lower right element (MM), and define
κ = (s2N 22l2

MdM)−1E(2). In the WCL, κ → κ̄ , we then get

κ̄ =
⎡
⎣ M̄2

B P̃2
B d̃B M̄B P̃BM̄S P̃S

1
2 (d̃B + d̃S) M̄B P̃B

1
2 (1 + d̃B)

M̄B P̃BM̄S P̃S
1
2 (d̃B + d̃S) M̄2

S P̃2
S d̃S M̄S P̃S

1
2 (1 + d̃S)

M̄B P̃B
1
2 (1 + d̃B) M̄S P̃S

1
2 (1 + d̃S) 1

⎤
⎦ . (15)

Note that there is no N -dependence in κ̄ .
Next we consider the matrix elements of W (2)

τ,τ ′ , which are defined as [10]

W (2)

τ,τ ′ = 1

MτMτ ′N 2

∑
m∈τ

∑
k∈τ ′

W (2)

m,k = 1

MτMτ ′N 2

∑
m∈τ

∑
k∈τ ′

( ∏
( j, j ′)∈Pk,m

w
(2)
j, j ′

w
(0)

j, j ′

)
. (16)

Here the product is over all pairs of nearest neighbour segments ( j, j ′) between segments k
and m, i.e. the path Pk,m along the chain. The coefficients w

(n)
j, j ′ = w

(n)
τ,τ ′ are nth Legendre



9366 P P F Wessels and B M Mulder

coefficients of wτ,τ ′(ω̂ · ω̂′) with j ∈ τ and j ′ ∈ τ ′. However, the matrix elements W (2)

τ,τ ′ vanish
in the case of infinitely long polymers, so therefore we define α = NW(2). Furthermore, for
notational purposes we also define

στ,τ ′ = w
(2)
τ,τ ′/w

(0)
τ,τ ′ . (17)

Here we only show the calculation of the SM element of α; the procedure is similar for the
remaining elements. From equation (16) we obtain

αS,M = N
MSN 2

⎛
⎜⎜⎝N

MS∑
k=1

σ
MS−k
S,S σS,M +

N∑
n,n′=1
n �=n′

MS∑
k=1

σ k−1
S,S σB,Sσ

|n−n′|MB
B,B σB,Sσ

MS−1
S,S σS,M

⎞
⎟⎟⎠ . (18)

The contributions to αS,M come from two distinct sources: the first are contributions from
spacer segments k and the mesogen within the same side-chain, σ

MS−k
S,S σS,M. The second

contributions are due to mesogens on other side-chains, and consequently are passed on via
part of the backbone, σ k−1

S,S σB,Sσ
|n−n′|MB
B,B σB,Sσ

MS−1
S,S σS,M. The indices n, n′ are used to sum

over units, and the indices k, k ′ are used to sum over segments within a unit. At this point, we
note that the sums above can be performed analytically. However, we are interested in the WCL
and IBL, so we proceed to these limits directly. The στp ,τp′ s we need become in the WCL (to
first order in β Jτ )

σB,B =
∫ 1
−1 dx P2(x) exp[β JBx]∫ 1

−1 dx exp[β JBx] → 1 − 3 (β JB)−1,

σS,S → 1 − 3 (β JS)
−1 ,

σB,S =
∫ 1

−1
dx P2(x)δ(x) = − 1

2 ,

σS,M = σS,S.

(19)

We note that σB,S is the single element with a negative value and it is this element which forces
the oblate backbone conformations. Next, a power of στ,τ (τ ∈ {B, S}) becomes in the WCL

σMτ

τ,τ = (
1 − 3 (β Jτ )

−1
)β JτM̄τ → exp

[−3M̄τ

]
, (20)

where we have used limn→∞(1 + x
n )n = exp[x]. Furthermore, as the backbone and the spacers

are continuous, the summations over k and k ′ (N.B. not the summations over n and n′) have to
be replaced by integrations. For example, the following sum becomes, using k̄S = k/β JS,

1

MS

MS∑
k=1

σ k
S,S → 1

M̄S

∫ M̄S

0
dk̄Se−3k̄S = 1 − e−3M̄S

3M̄S
. (21)

The summation over n and n′ becomes

lim
N→∞

1

N
N∑

n,n′=1
n �=n′

σ
MB|n−n′|
B,B → lim

N→∞
1

N
N∑

n,n′=1
n �=n′

e−3M̄B|n−n′| = 2e−3M̄B

1 − e−3M̄B
. (22)

Combining these results, we obtain a fairly simple expression for ᾱS,M (in the IBL as well as
the WCL, α → ᾱ),

ᾱS,M = 1 − e−3M̄S

3M̄S

(
1 + 1

2
e−3M̄S

e−3M̄B

1 − e−3M̄B

)
. (23)
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The other elements are similarly calculated,

ᾱB,B = 2

3M̄B
, (24)

ᾱB,S = − 1

3M̄B

(
1 − e−3M̄S

3M̄S

)
, (25)

ᾱB,M = −e−3M̄S

3M̄B
, (26)

ᾱS,S = 2

3M̄S

(
1 − 1 − e−3M̄S

3M̄S

)
+ 1

2

(
1 − e−3M̄S

3M̄S

)2
e−3M̄B

1 − e−3M̄B
, (27)

ᾱM,M = 1 + 1

2
e−6M̄S

e−3M̄B

1 − e−3M̄B
, (28)

with ᾱ symmetrical. We note that the components which are perpendicularly coupled, i.e. BM
and SM, have a minus sign in the corresponding element of ᾱ. This is due to the minus sign in
σB,S in equation (19).

In terms of the new matrices ᾱ and κ̄ and in the WCL and IBL, the eigenvalue equation
becomes

c = −ηs2

4π
ᾱκ̄c. (29)

This is a 3 × 3-matrix eigenvalue problem and therefore soluble. The eigenvalues λ of the
combined matrix ᾱκ̄ each correspond to a density. The lowest density we identify as the
bifurcation density η∗ where the nematic solution appears, so

η∗ = − 4π

s2 max λ
= 32

π max λ
. (30)

In fact, it is easy to check that det(κ̄) = 0, so there are only two nonzero eigenvalues. The
corresponding eigenvector c∗ yields the relative degree of order at the bifurcation. Normalizing
c∗ such that its third element (M) equals one, cM,∗ = 1, the first two elements are at bifurcation
equal to the average order of the backbone and the spacers in units of that of the mesogens.

In I, we showed that we can also calculate the order profile along a polymer, i.e. c′
B,∗(m̄B)

is the relative order along the backbone and c′
S,∗(m̄S) along the spacer. In the present case of

LC polymers in the WCL and the IBL we obtain

c′
∗(m̄B, m̄S) =

⎛
⎝ c′

B,∗(m̄B)

c′
S,∗(m̄S)

1

⎞
⎠ = −η∗s2

4π
ᾱ′(m̄B, m̄S)κ̄c∗. (31)

So after having solved the bifurcation equation (29) one can obtain the order profile via
equation (31) by using the bifurcation density η∗ and the order vector c∗ as an input. The only
additional ingredient we need is the new matrix ᾱ′(m̄B, m̄S), whose elements are calculated in
the same way as ᾱ and are given in the appendix (for more details, we again refer to I). The
matrices ᾱ and ᾱ′ are related through

ᾱ = 1

M̄BM̄S

∫ M̄B

0
dm̄B

∫ M̄S

0
dm̄S ᾱ′(m̄B, m̄S). (32)
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(a) (b)

(c) (d)

Figure 2. The I–N bifurcation density and the relative order of the components (inset) as a function
of spacer length, M̄S, for various values of the spacer separation, M̄B. The parameters are
d̃B = d̃S = 0, P̃B = P̃S = 0.3 and (a) M̄B = 0.1, (b) M̄B = 0.4, (c) M̄B = 1 and (d) M̄B = 5.
The order of the backbone (cB,∗, dotted line) and the spacers (cS,∗ , dashed line) is measured in terms
of that of the mesogens (cM,∗, solid line), which is set equal to unity everywhere. For comparison,
the bifurcation density of a gas of free mesogens is 32/π ≈ 10.186.

3.2. Results

In figures 2(a)–(d), we have plotted the I–N bifurcation density, η∗, and the components of the
bifurcating eigenvector, c∗, (inset) as a function of the spacer length M̄S. The four figures
correspond to an increasing spacer separation, M̄B = {0.1, 0.4, 1.0, 5}. The parameter values
are not representative of real systems but chosen to exhibit the amount of variation possible.

In figure 2(a), the length of the backbone between side-chains is very small. When in
addition the effective spacer length M̄S is also small, each mesogen is strongly coupled to
the neighbouring mesogens (which are ‘closely connected’ through spacer and backbone).
The I–N transition will therefore be at low densities, due to the relatively rigid nature of
the molecule. Upon increasing the spacer length, the mesogens become more decoupled and
the transition is postponed to higher densities. Above a certain spacer length, the mesogens
are effectively decoupled, and increasing the spacer length further just increases the overall
length of the molecule. This results in a decrease of the I–N bifurcation density after passing
through a maximum (this effect is better visible in figure 2(b)). For larger backbone lengths,
M̄B, the mesogens are already disconnected for M̄S = 0 and the M̄S-dependence of η∗ is
monotonically decreasing (figures 2 (c) and (d)).

The M̄S-dependences of the components of c∗ is roughly the same for all four cases,
figures 2(a)–(d). The normalization is such that cM,∗ = 1 for all parameters. For small M̄S, the
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Figure 3. Phase diagram. Combinations of M̄B and M̄S for which the system has zero backbone
order at bifurcation. Parameters are d̃B = d̃S = 0, P̃B = 0.3 and P̃S = 0.3 (upper curve), P̃S = 0.15
(middle curve) and P̃S = 0 (lower curve). (Inset: parameters are P̃B = P̃S = 0.3, d̃B = d̃S = 0
(upper curve), d̃B = d̃S = 0.25 (middle curve) and d̃B = d̃S = 0.5 (lower curve).) The lower
curve in the main figure is the analytical result, equation (34), M̄B P̃B = e−3M̄S , and the others are
obtained by numerically finding the root of equation (33). For each curve, the system has negative
backbone order at bifurcation when its model parameters are below it, and positive when above. If
M̄B P̃B > 1 the nematic is always PN.

degree of order of the spacers is close to that of the mesogens, because of their tight coupling.
The degree of order of the backbone, however, is very low (often negative even, corresponding
to a ON arrangement), because the coupling with the mesogen is strong and perpendicular
in orientation. Increasing the spacer length decouples the backbone from the mesogens, and
its segments are able to align themselves more with respect to the (infinitesimal) effective
molecular field. This means that cB,∗ increases and it passes through zero at some M̄S, if
it was negative. For the spacers, on average the coupling to the mesogens decreases, causing
the average spacer order to go down.

The combination of model parameters, for which the backbone has zero average order at
the bifurcation, can be found from

cB,∗ = 0. (33)

To analytically solve this equation (containing all six parameters) is impossible as it has a fairly
complex transcendental structure, i.e. it is a combination of e−3M̄S , M̄S and powers of them
(the same for M̄B). The cause for this complexity is the dual role that the backbone as well as
the spacers play; on the one hand, through the stiffness, they couple orientations on different
parts of the chain (yielding factors like e−3M̄S and e−3M̄B ), but on the other hand they also
contribute to the effective field through their excluded volume interactions (giving factors M̄S

and M̄B). It is rather straightforward, however, to construct a numerical scheme to find the
roots of equation (33) and the results are presented in figure 3.

We can solve equation (33), analytically, when we put P̃S = 0. In this way, the spacer has
no dimensions (it does not matter what value d̃S has) and does not enter into the external field.
As M̄S �= 0, this means that the mesogens are directly hinged on the backbone with e−3M̄S

acting as an orientational coupling parameter (large M̄S, small coupling, and vice versa). If
we also set the backbone diameter to zero, d̃B = 0, we get a very simple relation between the
remaining parameters,

M̄B P̃B = e−3M̄S . (34)

So basically, when the mesogen–backbone coupling, e−3M̄S , equals the backbone distance
between two spacers, the average backbone order at bifurcation is zero (for these polymers
without spacers). Moreover, if M̄B P̃B > 1, even for zero spacer length, M̄S = 0, the nematic
is PN (see figure 3).
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Figure 4. Relative order within the spacers and backbone (inset) at bifurcation. The positions
along the backbone are labelled by a continuous parameter running from zero to M̄B, with the
attachment point of the side-chain located at 1

2M̄B. The label of the side-chains runs from zero at
the attachment point to the backbone to M̄S at the attachment point to the mesogen. The parameters
are d̃B = d̃S = 0 and P̃B = P̃S = 0.3. In order to obtain variation in the plots we have varied M̄B

and M̄S simultaneously in each graph; i.e., (top left) M̄B = M̄S = 0.1, (top right) M̄B = M̄S = 1
and M̄B = M̄S = 10 (bottom). The mesogen order is again used as the unit, cM,∗ = 1.

In figure 4, we have plotted the relative degree of order at the bifurcation along the
backbone (inset) and spacer for three cases, molecules with very short backbones and spacers,
with intermediate lengths and with very long backbones and spacers. Again, the parameter
values are chosen to illustrate the possible degree of variation, and do not correspond to realistic
cases. The unit of order is again the bifurcating mesogen order, cM,∗ = 1. We first focus on the
backbones (inset). If the backbone were completely decoupled from the spacers and mesogens,
it would only experience the effective molecular field, and would respond by ordering with
respect to it. The case which comes closest to this is when the backbone component is relatively
long (figure 4, lower left). In this case, the parts of the backbone in between the spacer hinges
hardly experience the effects of the spacers, and therefore order as if they were decoupled. The
parts where the spacers are connected are affected and one can see an (exponential) relaxation
of the spacer influence on the backbone on moving away from the hinge. For shorter backbones,
this relaxation is already less pronounced (figure 4, upper right), and for very short values of
M̄B (figure 4, upper left) there is basically no relaxation (although the slope is zero halfway
between two hinges, but this is due to symmetry). The claim that there is almost no relaxation
in the upper left figure of figure 4 is strengthened by the fact that the vertical scale is much
smaller than those of the other two figures. From the upper right figure, it is now clear as well
that an average zero backbone order does not mean that the whole backbone has zero order, but
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Figure 5. Order as a function of density (left) and phase diagram (right), where both display the
I–N coexistence region. The parameters are M̄S = 0.2 (left) and M̄B = 0.4, P̃B = P̃S = 0.3,
d̃B = d̃S = 0 (left and right). Left: the filled squares are the coexistence (binodal) points and
the open circle is the bifurcation (or spinodal) point. The crosses represent the relative order at
the bifurcation point, where the degree of order of the mesogen at bifurcation is set equal to the
mesogen order at coexistence. Right: the full curves are the coexistence lines, the dashed curve
is the bifurcation density and the dotted curve is the ON–PN cross-over, i.e. where SB = 0. The
open circle is the bifurcation point where cB,∗ = 0 and the filled diamond is the analytical result of
equation (34), M̄S = − 1

3 ln(M̄B P̃B) ≈ 0.707. To compare, the bifurcation density of a gas of free
mesogens is 32/π ≈ 10.186. The binodal results are generated by the numerical scheme presented
in [21].

rather that the negative order of the backbone at the hinges cancels with the positive order of
the parts in between the hinges.

Next we consider the spacers. For all three cases, the mesogen is attached at m̄S = M̄S and
therefore c′

S,∗(M̄S) = 1. The arguments run along the same lines as those for the backbone.
Decoupled spacers (both from the backbone and the mesogens) would only experience the
external field and would order with respect to this. Again, this is most clear for long spacer
lengths (figure 4, lower left). The midpoints of the spacers are effectively decoupled from the
backbone and mesogens. The ends are strongly affected, and going towards the middle there
is again a (exponential) relaxation. For shorter spacer lengths, the relaxed part of the spacer
disappears (figure 4, upper graphs). As a last note, we mention that for the very short backbone
and spacers (figure 4, upper left) the relative order of the spacer is even slightly larger than one
at the point where it connects to the backbone, cS,∗(0) > cM,∗, although this is a very marginal
effect.

Finally, we compare some of the bifurcation results with exact numerical results for the
same system presented in [21] in figure 5. On the left in figure 5 we have plotted the order
as a function of density close to coexistence. The bifurcation density is located close to the
nematic coexistence density, something which we find to occur quite generally. The crosses
represent the order at bifurcation where the mesogen order at bifurcation has been equated with
the mesogen order at coexistence. The other two crosses give a good indication of the order
of the spacers and the backbone. On the right in figure 5 we have given the phase diagram
in terms of density versus spacer length M̄S. The bifurcation density is seen to follow the
nematic coexistence density quite closely. The filled circle is the point where the nematic phase
bifurcates with zero backbone order. This point is found be close to the point where the dotted
curve hits the full curve, which is the actual location of zero backbone order at coexistence.
This point is also reasonably estimated by the analytical result of equation (34).
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4. Conclusion and discussion

We have studied the isotropic-to-nematic transition in a fluid of side-chain LC polymers. The
side-chain LC polymers are explicitly modelled to consist of a (more or less) flexible backbone
and lateral spacers and rigid mesogens, thus incorporating the relevant molecular details as well
as their branched geometry. Using the segmented chain approach, which we developed in I for
very general heteropolymeric systems, we are able to locate the so-called bifurcation density
where the nematic solution branches off the isotropic solution. For conceptual simplicity, but
also to reduce the number of model parameters, we have applied the wormlike chain limit
to the segmented backbone and spacers and we assumed the backbone to be infinitely long.
The I–N bifurcation density has been obtained in closed analytical form as a function of the
six model parameters. The average backbone order at bifurcation can be negative or positive
with respect to that of the mesogens, corresponding respectively to oblate or prolate backbone
conformations. We have determined the phase diagram of for which combinations of model
parameters an oblate or prolate nematic is formed. Other results include order profiles along
the backbone and the spacers. Finally, we have compared some of the bifurcation results with
the exact numerical results obtained in [21] for the same system.

In [18, 19], Warner and co-workers (WWR) considered a similar system of polymers
consisting of wormlike backbones and laterally hinged rigid mesogen side-groups, but not
including spacers as a separate component. Using Maier–Saupe type interactions between
the components and the temperature as the thermodynamic variable, they identified three
different nematic phases, two of which are the oblate and prolate nematic also considered
here, and the third corresponds to a backbone-induced nematic. However, in the WWR-
approach, no distinction is made between mesogen–backbone interactions acting through the
effective mean field (interchain) or mediated by the connecting hinges (intrachain). As a
result, the orientational fields of the mesogens act in a delocalized fashion on the backbones
and vice versa. In our approach we explicitly distinguish between these two different sources
of interaction between the mesogens and the backbone, and include the intrachain (bending)
contributions exactly. Consequently, we are able to study the non-uniform order profiles along
spacers and backbone due to the connectivity between all the components. Furthermore, the
distinction between these two interaction contributions also results in a different scaling: i.e.
interchain interactions, which are due to the interaction with other polymers, scale with the
density, whereas the intrachain interactions, which are single-polymer effects, are density
independent. The fact that we use a lyotropic (Onsager type) theory where WWR use a
thermotropic (Maier–Saupe type) approach is not expected to yield great differences, as the
two approaches have an almost identical formal structure. Identifying density with inverse
temperature gives a rough correspondence in (phase) behaviour. An additional advantage of
the Onsager type interactions over Maier–Saupe interactions is that in this case the dimensions
of the molecule totally fix the relative magnitude of the various interactions, whereas these
interactions in the WWR approach can be tuned to arbitrary relative magnitudes, which does
not necessarily reflect realistic physical behaviour. Our theory does need six model parameters,
in contrast to WWR, who use four. This difference is due to the fact that we explicitly take
into account the lateral spacer chains, whose dimensions yield two extra model parameters: P̃S

and d̃S. In [21] we have already compared the full nematic phase behaviour for the present
system to WRR. The most striking difference is that nematic–nematic phase transitions of the
type found by WRR are ruled out by a convexity argument on the free energy. This difference
can be directly traced to the difference in the way the intrachain degrees of freedom are treated.

Experimental systems of side-chain LC polymers commonly show smectic phases
[3, 6, 2, 27, 28]. Indeed, the system we consider, for which we here have calculated the stability
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with respect to nematic perturbations, may in principle become unstable with respect to the
smectic phase even before becoming a nematic. It would thus be very interesting to include
this type of ordering in the present approach and study the competition between smectics and
nematics. However, this poses a major theoretical challenge. The bifurcation analysis certainly
will become a lot more complicated, as the smectic density would cause non-trivial position–
orientation couplings along the polymer. The resulting eigenfunctions of the interaction kernel
would no longer follow from a symmetry related argument, as the Legendre polynomials do in
the nematic case, but would have to be computed numerically. A first attempt in this direction,
which considers the formation lamellar phases in liquid-crystalline heteropolymers, is found
in [29]. Polydispersity in the degree of polymerization is also inevitable in experimental
systems, but its effect on the I–N phase behaviour is expected to be marginal, justifying our
use of infinitely long backbones. In inhomogeneous phases, however, correlations travel much
further along the polymers and polydispersity is seen to affect the phase behaviour [2, 28].
Finally, odd–even effects of the transition temperatures are often reported, where e.g. the
clearing temperature shows oscillations as a function of spacer length. These could in principle
be studied with the present model, but more sophisticated interactions along the chain would
be necessary, i.e. between next-nearest-neighbouring segments, modelling e.g. the different
rotation-isomeric states that occur in –(CH2)– chains.
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Appendix. The elements of ᾱ′

In this appendix we give the elements of the matrix ᾱ′(m̄B, m̄S), which is needed to calculate
order profiles along the spacers and backbone (equation (31)):

ᾱ′
B,B = ᾱB,B, (A.1)

ᾱ′
B,S(m̄B) = −1

2

(
1 − e−3M̄S

3M̄S

){
e−3|m̄B− 1

2 M̄B|

+
(

e3(m̄B− 1
2 M̄B) + e−3(m̄B− 1

2 M̄B)
) e−3M̄B

1 − e−3M̄B

}
, (A.2)

ᾱ′
B,M(m̄B) = −1

2
e−3M̄B

{
e−3|m̄B− 1

2 M̄B| +
(

e3(m̄B− 1
2 M̄B) + e−3(m̄B− 1

2 M̄B)
) e−3M̄B

1 − e−3M̄B

}
, (A.3)

ᾱ′
S,B(m̄S) = − 1

3M̄B
e−3m̄S , (A.4)

ᾱ′
S,S(m̄S) = 1

3M̄S

(
2 − e−3m̄S − e−3(M̄S−m̄S) + 1

2
e−3m̄S

(
1 − e−3M̄S

) e−3M̄B

1 − e−3M̄B

)
, (A.5)

ᾱ′
S,M(m̄S) = e−3(M̄S−m̄S) + 1

2
e−3M̄S−3m̄S

e−3M̄B

1 − e−3M̄B
, (A.6)

ᾱ′
M,B = ᾱM,B, (A.7)

ᾱ′
M,S = ᾱM,S, (A.8)

ᾱ′
M,M = ᾱM,M. (A.9)
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Here, m̄B ∈ [0,M̄B] where m̄B = 0 and m̄B = M̄B are the same (because the backbone is
infinitely periodic) in between the spacers and m̄B = 1

2M̄B is where the spacer is attached to
the backbone. Further, m̄S ∈ [0,M̄S] where m̄S = 0 is on the backbone side of the spacer
and m̄S = M̄S is on the mesogen side of the spacer. In contrast with ᾱ, ᾱ′ is not symmetric.
Obviously, the elements ᾱ′

M,τ = ᾱM,τ have no m̄M-dependence as there is only one mesogen in
a unit. Also ᾱ′

B,B = ᾱB,B has no m̄B-dependence due to the complete translational symmetry
along the infinite backbone.
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